508 Royalty-Free Audio Tracks for "Surface"

00:00
00:19
Sharpening knife : sharp sound. The sound was post-processed to make the sound of the knife seem more scary. Afiando faca : som afiado. O som foi pós-processado para fazer o som da faca parecer mais assustador. Dragging a knife : shaky sound of a knife being dragged on an irregular surface. Arrastando uma faca: som trêmulo de uma faca sendo arrastada em uma superfície irregular. Girl yelling : high pitched sound. The sound was post-processed to seem like the sound happened in a room full of echo. Garota gritando : som agudo. O som foi pós-processado para parecer que o som aconteceu em uma sala cheia de eco. Gravados com um microfone shotgun shure vp89 e uma placa de som behringer u-phoria umc404 hd. Gravado no estúdio da escola ort no rio de janeiro, em fevereiro de 2022.
Author: Escola Ort
00:00
02:38
I noticed there were no dry ice on oven rack sounds here so here is a recording of dry ice interacting with a steel oven rack. As the dry ice melts it creates vibrations on the metal that evolve as the material travels across the surface. It is an awful sound resembling a combination of saxophone, violin, bagpipe and screaming (any species). This was recorded on halloween 2018. It was a tradition in my family when i was a kid to get some dry ice on halloween and fill beakers with colored water to surround the candy display. The addition of dry ice on oven rack sound effects developed later and truly scared a lot of kids because it is so loud and terrible. These days we make some dry ice kief as well which makes the holiday even more festive and weird.
Author: Cbird
00:00
00:03
Pistol fired outdoors with ricochet. Single shot, fairly close, with fast fadeout. Narrow stereo image, no panning, almost monophonic. Wholly synthesized. No weapon was fired in the making of this sound. It's an emulated sound effect of a sidearm gunshot with a cliche ricochet sound, like in the vintage western movies and ww2 films that they showed on tv when i was a kid. Can be used in a game, perhaps, or a none-too-serious vidclip. The sound of the pistol cartridge explosion is default flstudio kick, clap and snare slowed right down. A single tap of delay is added to lend an impression of echo off a middle distance hard surface. The ricochet noise was made with sytrus running as a vsti inside flstudio. It took an entire day of head scratching, oscillator tweaking and envelope mangling to get something that reasonably resembles a sound that i recall from the old movies. I think i'll shoot myself before i try something like this again. :). Plus the usual flstudio compressors, eq, reverb and delay - nothing tricky, just standard stuff.
Author: Diboz
00:00
16:54
Several years back my older brother stumbled upon a bunch of old family reel to reel films and sat down one evening to project them on a wall and digitize them. This is the sound of that process. What you can hear, i imagine, is the noise of the projector in the left channel and the sound of the reels in the right channel. I've been obsessed with the sounds of the infinite variation in old analog hardware. As a sound designer, that infinite variation is often sought after but rarely, or accurately, reproduced through digital files in various libraries. Of if they are, they're often too short to cover whatever scene i am trying to fill. On the surface it's just noise but if you listen closer it's this wonderful cacophony of overlapping and repeating sounds that are always looping but never quite identical on each rotation. It was ripped from youtube using audio hijack at 48khz/16bit, but due to youtube re-encoding things as youtube does, it's nowhere near the source. It's still, in my opinion, a sound worth sharing. Enjoy!.
Author: Theoddcastdark
00:00
04:09
Mud volcano field, davis-schrimpf seep field, salton sea, california. Lat: 33. 20070326716746lon: 244. 42179501054162. The davis-schrimpf onshore seep field site in the salton sea geothermal system is the result of shallow magmatic intrusions in a sedimentary basin. The ssgs is situated in the salton trough in southern california, an area with abundant surface manifestations of hydrothermal activity. The hydrothermal system in the salton trough occurs in a pull-apart setting where rifting and associated magmatic intrusions are responsible for the strong heat flow. One of the most concentrated and well-expressed onshore seep fields is the davis-schrimpf field, where more than 50 individual seeps are located in this area. Gas venting from gryphons and pools is vigorous with a continuous bubbling activity. Water and mud mixtures are continuously expelled down the flanks of the gryphons. Carbon dioxide produced from de-volatilization reactions involving sedimentary carbonate is the main driver for the seep activity. The morphological features of the davis- schrimpf seep field are strikingly similar to seep fields on dormant mud volcanoes however, the davis-schrimpf seeps are not related to mud volcanism, as mud volcanism normally implies large-scale mud breccia eruptions and a low temperature seep stage. From the; journal of geophysical research, vol. 114, b09201, doi:10. 1029/2008jb006247, 2009.
Author: Rtb
00:00
10:29
Individual gryphons, davis-schrimpf seep field, salton sea, california. Lat: 33. 20070326716746lon: 244. 42179501054162. The davis-schrimpf onshore seep field site in the salton sea geothermal system is the result of shallow magmatic intrusions in a sedimentary basin. The ssgs is situated in the salton trough in southern california, an area with abundant surface manifestations of hydrothermal activity. The hydrothermal system in the salton trough occurs in a pull-apart setting where rifting and associated magmatic intrusions are responsible for the strong heat flow. One of the most concentrated and well-expressed onshore seep fields is the davis-schrimpf field, where more than 50 individual seeps are located in this area. Gas venting from gryphons and pools is vigorous with a continuous bubbling activity. Water and mud mixtures are continuously expelled down the flanks of the gryphons. Carbon dioxide produced from de-volatilization reactions involving sedimentary carbonate is the main driver for the seep activity. The morphological features of the davis- schrimpf seep field are strikingly similar to seep fields on dormant mud volcanoes however, the davis-schrimpf seeps are not related to mud volcanism, as mud volcanism normally implies large-scale mud breccia eruptions and a low temperature seep stage. From the; journal of geophysical research, vol. 114, b09201, doi:10. 1029/2008jb006247, 2009.
Author: Rtb
00:00
00:37
A few cycles of my dad's home oxygen machine with a ticking battery operated clock in the background recorded in the early morning in the living room with lifecam hd3000 webcam at the end of about 16 feet of usb cable dragged out of my bedroom. He's about 6 feet away, i was with my back to the room with my camera pointed at my chest so he wouldn't think i was filming. It would seem this is the first and only oxygen machine on freesound. A full cycle seems to last from between 7 to 10 seconds. From wikipediaoxygen concentrators typically use pressure swing adsorption technology and are used very widely for oxygen provision in healthcare applications, especially where liquid or pressurised oxygen is too dangerous or inconvenient, such as in homes or in portable clinics. Oxygen concentrators are also used to provide an economical source of oxygen in industrial processes, where they are also known as oxygen gas generators or oxygen generation plants. Oxygen concentrators utilize a molecular sieve to adsorb gasses and operate on the principle of rapid pressure swing adsorption of atmospheric nitrogen onto zeolite minerals and then venting the nitrogen. This type of adsorption system is therefore functionally a nitrogen scrubber leaving the other atmospheric gasses to pass through. This leaves oxygen as the primary gas remaining. Psa technology is a reliable and economical technique for small to mid-scale oxygen generation, with cryogenic separation more suitable at higher volumes and external delivery generally more suitable for small volumes. [1]at high pressure, the porous zeolite adsorbs large quantities of nitrogen, due to its large surface area and chemical character. After the oxygen and other free components are collected the pressure drops which allows nitrogen to desorb. An oxygen concentrator has an air compressor, two cylinders filled with zeolite pellets, a pressure equalizing reservoir, and some valves and tubes. In the first half-cycle the first cylinder receives air from the compressor, which lasts about 3 seconds. During that time the pressure in the first cylinder rises from atmospheric to about 1. 5 times normal atmospheric pressure (typically 20 psi/138 kpa gauge, or 1. 36 atmospheres absolute) and the zeolite becomes saturated with nitrogen. As the first cylinder reaches near pure oxygen (there are small amounts of argon, co2, water vapour, radon and other minor atmospheric components) in the first half-cycle, a valve opens and the oxygen enriched gas flows to the pressure equalizing reservoir, which connects to the patient's oxygen hose. At the end of the first half of the cycle, there is another valve position change so that the air from the compressor is directed to the 2nd cylinder. Pressure in the first cylinder drops as the enriched oxygen moves into the reservoir, allowing the nitrogen to be desorbed back into gas. Part way through the second half of the cycle there is another valve position change to vent the gas in the first cylinder back into the ambient atmosphere, keeping the concentration of oxygen in the pressure equalizing reservoir from falling below about 90%. The pressure in the hose delivering oxygen from the equalizing reservoir is kept steady by a pressure reducing valve. Older units cycled with a period of about 20 seconds, and supplied up to 5 litres per minute of 90+% oxygen. Since about 1999, units capable of supplying up to 10 lpm have been available.
Author: Kbclx
00:00
07:20
Recorded in my dad's bedroom with lifecam hd3000 webcam. This is a much better recording than my previous oxygen concentrator file, as i hauled my desktop into the bedroom at the other end of the apartment where the machine now is, when i was home alone. The webcam is on the bed about 3 or 4 feet from the machineat the beginning of the file you hear me flip the big switch and the machine comes on with a long on beep and thumps. I edited it to start then. At 00:1. 8 what i suspect is the water pump comes on, though i may be wrong. That's when the gurgling starts though. The machine has a small reservoir for distilled water to moisten the airflow. A cup or two lasts several daysyou'll hear various hisses and thumps in a 15. 6 second cycle as it runs. At 03:03 i flip the big switch to shut the machine off, and it bubbles and gurgles away for the rest of the file, as water i assume slowly perculates back into the reservoir, the bubbling getting quieter and quieter until it doesn't even sound like bubbling anymore, until it finally ticks to a stop. At 03:16 you hear me step as i get my foot loose from the mic cord lol. At 04:13 the furnace shuts down as a car finishes going by outside in the bass register, faint traffic noises and the furnace being the only background noises you'll hear aside from my moving around a couple times, and a faint bluejay at the end. At about 07:00 you can barely hear the machine anymore, but i could hear a faint ticking with my own ears. At 07:04 the furnace comes back on. At 07:08 you'll hear a bluejay faintly calling outside and a car going by outside after, which finishes the file at 07:20. I edited out my walking to the computer to shut the recording down. From wikipediaoxygen concentrators typically use pressure swing adsorption technology and are used very widely for oxygen provision in healthcare applications, especially where liquid or pressurised oxygen is too dangerous or inconvenient, such as in homes or in portable clinics. Oxygen concentrators are also used to provide an economical source of oxygen in industrial processes, where they are also known as oxygen gas generators or oxygen generation plants. Oxygen concentrators utilize a molecular sieve to adsorb gasses and operate on the principle of rapid pressure swing adsorption of atmospheric nitrogen onto zeolite minerals and then venting the nitrogen. This type of adsorption system is therefore functionally a nitrogen scrubber leaving the other atmospheric gasses to pass through. This leaves oxygen as the primary gas remaining. Psa technology is a reliable and economical technique for small to mid-scale oxygen generation, with cryogenic separation more suitable at higher volumes and external delivery generally more suitable for small volumes. [1]at high pressure, the porous zeolite adsorbs large quantities of nitrogen, due to its large surface area and chemical character. After the oxygen and other free components are collected the pressure drops which allows nitrogen to desorb. An oxygen concentrator has an air compressor, two cylinders filled with zeolite pellets, a pressure equalizing reservoir, and some valves and tubes. In the first half-cycle the first cylinder receives air from the compressor, which lasts about 3 seconds. During that time the pressure in the first cylinder rises from atmospheric to about 1. 5 times normal atmospheric pressure (typically 20 psi/138 kpa gauge, or 1. 36 atmospheres absolute) and the zeolite becomes saturated with nitrogen. As the first cylinder reaches near pure oxygen (there are small amounts of argon, co2, water vapour, radon and other minor atmospheric components) in the first half-cycle, a valve opens and the oxygen enriched gas flows to the pressure equalizing reservoir, which connects to the patient's oxygen hose. At the end of the first half of the cycle, there is another valve position change so that the air from the compressor is directed to the 2nd cylinder. Pressure in the first cylinder drops as the enriched oxygen moves into the reservoir, allowing the nitrogen to be desorbed back into gas. Part way through the second half of the cycle there is another valve position change to vent the gas in the first cylinder back into the ambient atmosphere, keeping the concentration of oxygen in the pressure equalizing reservoir from falling below about 90%. The pressure in the hose delivering oxygen from the equalizing reservoir is kept steady by a pressure reducing valve. Older units cycled with a period of about 20 seconds, and supplied up to 5 litres per minute of 90+% oxygen. Since about 1999, units capable of supplying up to 10 lpm have been available.
Author: Kbclx
501 - 508 of 508
/ 11